PENERAPAN NATURAL LANGUAGE PROCESSING UNTUK PENILAIAN OTOMATIS PROPOSAL RISET DAN PENGABDIAN MASYARAKAT: APLIKASI SRIKANDI UNHASY
Keywords:
Natural Language Processing, penilaian otomatis, proposal riset, efisiensi, akurasiAbstract
Penelitian ini bertujuan untuk mengembangkan aplikasi SRIKANDI UNHASY yang memanfaatkan teknologi Natural Language Processing (NLP) untuk penilaian otomatis proposal riset dan pengabdian masyarakat. Aplikasi ini dirancang untuk meningkatkan efisiensi, objektivitas, dan kecepatan penilaian, dengan mengurangi potensi bias yang sering terjadi dalam penilaian manual. Metodologi yang digunakan mencakup analisis teks proposal dengan teknik NLP seperti tokenisasi, stemming, dan analisis semantik. Hasil pengujian menunjukkan bahwa aplikasi ini memiliki akurasi sebesar 87,50%, namun presisi dan recall masing-masing hanya mencapai 25% dan 33,33%, yang menunjukkan adanya ruang untuk perbaikan. Kesimpulan dari penelitian ini adalah bahwa meskipun aplikasi ini efektif dalam meningkatkan efisiensi penilaian, masih perlu dilakukan pengembangan lebih lanjut dalam hal akurasi dan kemampuan untuk menilai aspek non-teknis proposal. Aplikasi ini diharapkan dapat diterapkan di lembaga pendidikan dan organisasi lain untuk meningkatkan kualitas penelitian di Indonesia.
Downloads
References
Anderson, K., & Davis, S. (2023). Natural language processing capabilities in text comprehension and generation. Computational Linguistics, 49(1), 45–68. https://doi.org/10.1162/coli_a_00456
Bae, J. H., Han, H. W., Yang, S. Y., Song, G., Sa, S., Chung, G. E., Seo, J. Y., Jin, E. H., Kim, H., & An, D. (2022). Natural Language Processing for Assessing Quality Indicators in Free-Text Colonoscopy and Pathology Reports: Development and Usability Study. JMIR Medical Informatics, 10(4), e35257. https://doi.org/10.2196/35257
Brown, J., & Davis, M. (2022). Objectivity and transparency in AI-powered assessment tools. Educational Technology Research, 38(2), 156–171. https://doi.org/10.1007/s11423-022-10123-8
Chen, Y., Wang, L., & Zhang, M. (2021). Bias in peer review: A systematic review and meta-analysis. Research Integrity and Peer Review, 6(1), 1–15. https://doi.org/10.1186/s41073-021-00112-8
Computer Technology Department, Yaba College of Technology, Yaba, Lagos, Nigeria., Mutiu, R. M., Afolabi, Prof. A. O., Computer Science Department, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria., Fenwa, Dr. (Mrs. ) O. D., Computer Science Department, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria., Ajala, Dr. (Mrs. ) F. A., & Computer Science Department, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria. (2021). An Improved LSA Model for Electronic Assessment of Free Text Document. International Journal of Innovative Technology and Exploring Engineering, 10(4), 152–159. https://doi.org/10.35940/ijitee.D8536.0210421
Garcia, M., & Wilson, T. (2021). Addressing subjectivity in academic evaluation processes through automation. Assessment in Education, 28(3), 312–329. https://doi.org/10.1080/0969594X.2021.1987654
Ha, M., Choi, J., Lim, D., Choi, S., Choo, J., Shin, C. K., & Park, J. (2023). Development of an Unsupervised LearningBased Automated Evaluation System of Descriptive Assessment. Institute of Brain-Based Education Korea National University of Education, 13(4), 339–351. https://doi.org/10.31216/bdl.20230021
Johnson, M., & Smith, K. (2020). Time complexity and human error in manual assessment processes. Educational Assessment Quarterly, 45(3), 234–249. https://doi.org/10.1080/10627197.2020.1234567
Kesiku, C. Y., Chaves-Villota, A., & Garcia-Zapirain, B. (2022). Natural Language Processing Techniques for Text Classification of Biomedical Documents: A Systematic Review. Information, 13(10), 499. https://doi.org/10.3390/info13100499
Kumar, S., & Patel, R. (2021). Machine learning approaches for automated document evaluation: A comprehensive survey. Computer Science Reviews, 41, 100–115. https://doi.org/10.1016/j.cosrev.2021.100415
Lee, S., Park, K., & Johnson, R. (2021). Speed and accuracy improvements in automated text evaluation systems. Journal of Educational Computing Research, 59(5), 923–945. https://doi.org/10.1177/0735633121012345
Li, X. (2022). An English Translation Quality Evaluation Model Integrating Knowledge Transfer and Wireless Network. Mobile Information Systems, 2022, 1–10. https://doi.org/10.1155/2022/2086486
Liu, X., & Miller, J. (2020). Human bias reduction in proposal assessment systems. Research Policy, 49(8), 104–118. https://doi.org/10.1016/j.respol.2020.104056
Naji, B., Abdelmoula, C., & Masmoudi, M. (2022). A Real Time Algorithm for Versatile Mode Parking System and Its Implementation on FPGA Board. Applied Sciences, 12(2), 655. https://doi.org/10.3390/app12020655
Perlman‐Arrow, S., Loo, N., Bobrovitz, N., Yan, T., & Arora, R. K. (2023). A real‐world evaluation of the implementation of NLP technology in abstract screening of a systematic review. Research Synthesis Methods, 14(4), 608–621. https://doi.org/10.1002/jrsm.1636
Rodriguez, A., Martinez, C., & Lopez, P. (2019). Subjectivity and inconsistency in research proposal evaluation: A multi-institutional study. Higher Education Research, 32(4), 567–582. https://doi.org/10.1007/s10734-019-00123-4
Sihombing, D. O. (2022). Implementasi Natural Language Processing (NLP) dan Algoritma Cosine Similarity dalam Penilaian Ujian Esai Otomatis. Jurnal Sistem Komputer Dan Informatika (JSON), 4(2), 396. https://doi.org/10.30865/json.v4i2.5374
Suryachandra, P. (2020). A Novel Hybrid Machine Learning Approach to Classify the Sentiment Value of Natural Language Processing in Big Data. International Journal of Emerging Trends in Engineering Research, 8(8), 4160–4165. https://doi.org/10.30534/ijeter/2020/21882020
Tang, J. (2024). Study on Intelligent Scoring of English Composition Based on Machine Learning From the Perspective of Natural Language Processing. Acm Transactions on Asian and Low-Resource Language Information Processing. https://doi.org/10.1145/3625545
Taylor, P., & White, L. (2021). Reliability and accuracy in automated academic evaluation systems. Journal of Educational Computing Research, 59(4), 678–695. https://doi.org/10.1177/0735633121987654
Thompson, D., Lee, H., & Brown, A. (2020). Advances in natural language understanding for automated assessment systems. IEEE Transactions on Learning Technologies, 13(4), 789–801. https://doi.org/10.1109/TLT.2020.2987654
Wen, B. (2023). Research on the Applications of Natural Language Processing. Applied and Computational Engineering, 16(1), 220–227. https://doi.org/10.54254/2755-2721/16/20230896
Williams, R., & Thompson, J. (2022). Objective evaluation frameworks in academic research assessment. Journal of Research Administration, 53(2), 89–106. https://doi.org/10.1177/15234302221234567
Zhang, L., Kim, S., & Patel, N. (2022). Natural language processing for automated text analysis: Recent advances and applications. Artificial Intelligence Review, 55(2), 1123–1145. https://doi.org/10.1007/s10462-021-10012-3
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Edwin Hari Agus Prastyo, Meriana Wahyu Nugroho, Reza Augusta Jannatul Firdaus (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.






